Neural network control for a closed-loop System using Feedback-error-learning
نویسندگان
چکیده
This paper presents new learning schemes using feedback-error-learning for a neural network model applied to adaptive nonlinear feedback control. Feedback-error-learning was proposed as a learning method for forming a feedforward controller that uses the output of a feedback controller as the error for training a neural network model. Using new schemes for nonlinear feedback control, the actual responses after learning correspond to the desired responses which are defined by an inverse reference model implemented as a conventional feedback controller. In this respect, these methods are similar to Model Reference Adaptive Control (MRAC) applied to linear or linearized systems. It is shown that learning impedance control is derived when one proposed scheme is used in Cartesian space. We show the results of applying these learning schemes to an inverted pendulum and a 2-link manipulator. We also discuss the convergence properties of the neural network models employed in these learning schemes by applying the Lyapunov method to the averaged equations associated with the stochastic differential equations which describe the system dynamics. Keywords-Neural network control, Adaptive control, Feedback-control learning, Reference model, Impedance control, Feedback-error-learning, Cerebellum motor control learning.
منابع مشابه
طراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملRobust Adaptive Neural Control of the Blood Glucose for Type 1 Diabetic Patients in Presence of Meals
In this paper, the blood glucose control for type 1 diabetic patients in the presence of model uncertainties and uncertain meals is considered. In order to present an efficient control approach, it is assumed that the dynamics describe the mechanism of the blood glucose regulation in type 1 diabetic patients are completely unknown. Hence, based on the universal approximation property of the rad...
متن کاملClosed-Loop Compensation of the Quadrature Error in MEMS Vibratory Gyroscopes
In this paper, a simple but effective method for compensation of the quadrature error in MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback readout system were analyzed and the proposed solution assures good rejection capabilities. Based on ...
متن کاملPosition Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison
In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...
متن کاملDesign of robust controller by neuro-fuzzy system in a prescribed region via state feedback
In this paper, first a new algorithm for pole assignment of closed-loop multi-variable controllable systems in a prescribed region of the z-plane is presented. Then, robust state feedback controllers are designed by implementing a neural fuzzy system for the placement of closed-loop poles of a controllable system in a prescribed region in the left-hand side of z-plane. A new method based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Networks
دوره 6 شماره
صفحات -
تاریخ انتشار 1993